BRADLEY'S MATHS

GCSE Higher Level Mathematics

NUMBER

1.2: Squares and Cubes

William Bradley

19 November 2025

Abstract

This worksheet and answer sheet are, together, a stand alone teaching and learning document aimed directly at the GCSE syllabus item N1 6 Use positive integer powers and associated real roots (square, cube).

This booklet has been fully updated with our unique colour coded box system to facilitate teaching and learning:

- · Violet for Deeper Insights into the subject matter
- · Green for Methods and Examples
- Blue for Pro-Tips how to approach questions
- · Yellow for Caution avoiding common pitfalls
- Cyan for Reminders

The worksheets have been designed with enough space for students to answer the questions directly in the booklet.

1.2 SQUARES AND CUBES WORKSHEET AND ANSWER SHEET

Instructions

- Answer all questions.
- Show all your working clearly in the spaces provided.
- The number of marks for each question or part question is shown in brackets [].
- Do not use an electronic calculator for this worksheet.

Key Concepts: Squares, Cubes, and their Roots

This worksheet covers powers and roots. A **power** tells you to multiply a number by itself a certain number of times. A **root** is the reverse operation.

1. Square Numbers and Square Roots

Core Concept: Squaring and Square Rooting

• To **square** a number, you multiply it by itself. This is also called raising it to the power of 2.

$$5^2 = 5 \times 5 = 25$$

- A **square number** is the result of squaring an integer. (e.g., 25 is a square number).
- A **square root** $(\sqrt{\ })$ is the opposite of squaring. It finds the number that was multiplied by itself to get the original number.

$$\sqrt{25} = 5$$

2. Cube Numbers and Cube Roots

Core Concept: Cubing and Cube Rooting

• To **cube** a number, you multiply it by itself three times. This is also called raising it to the power of 3.

$$4^3 = 4 \times 4 \times 4 = 64$$

- A cube number is the result of cubing an integer. (e.g., 64 is a cube number).
- A cube root (³√) is the opposite of cubing. It finds the number that was
 multiplied by itself three times to get the original number.

$$\sqrt[3]{64} = 4$$

Caution: Dealing with Negative Numbers

Be very careful with the signs when working with negative numbers.

Squaring a negative gives a POSITIVE result:
 A negative times a negative is a positive.

$$(-5)^2 = (-5) \times (-5) = 25$$

Cubing a negative gives a NEGATIVE result:
 (negative × negative) × negative = positive × negative = negative.

$$(-2)^3 = (-2) \times (-2) \times (-2) = 4 \times (-2) = -8$$

• This also means you can find the cube root of a negative number: $\sqrt[3]{-8} = -2$.

Common Error: The Position of the Negative Sign

Pay very close attention to the brackets. There is a critical difference between -5^2 and $(-5)^2$.

• $(-5)^2$ means "square the number -5". The result is positive.

$$(-5)^2 = (-5) \times (-5) = 25$$

• -5^2 means "square the number 5, then make the result negative". The power is attached only to the 5, not the negative sign.

$$-5^2 = -(5 \times 5) = -25$$

This is a rule from the order of operations (BODMAS/BIDMAS): Indices are calculated before the negative sign (which acts like a subtraction from zero) is applied.

Reference: First 12 Square and Cube Numbers

Square Numbers

$$1^2 = 1$$

$$2^2 = 4$$

$$3^2 = 9$$

$$4^2 = 16$$

$$5^2 = 25$$

$$6^2 = 36$$

$$7^2 = 49$$

$$8^2 = 64$$

$$9^2 = 81$$

$$10^2 = 100$$

$$11^2 = 121$$

$$12^2 = 144$$

Cube Numbers

$$1^3 = 1$$

$$2^3 = 8$$

$$3^3 = 27$$

$$4^3 = 64$$

$$5^3 = 125$$

$$6^3 = 216$$

$$10^3 = 1000$$

1. From the list below, identify:

1, 8, 12, 16, 25, 27, 30, 64, 100

(a) the square numbers. [1]

(b) the cube numbers. [1]

(c) the numbers that are both square numbers and cube numbers. [1]

Total: [3]

- 2. Calculate the following:
 - (a) 7^2 [1]
 - (b) 11² [1]
 - (c) $(-5)^2$ [1]
 - (d) 1^2 [1]
 - (e) 20^2 [1]

- 3. Calculate the following:
 - (a) 4^3 [1]
 - (b) 1^3 [1]
 - (c) $(-2)^3$ [1]
 - (d) 5^3 [1]
 - (e) 10^3 [1]

- 4. Find the value of the following:
 - (a) $\sqrt{49}$ [1]
 - (b) $\sqrt{144}$ [1]
 - (c) $\sqrt{1}$ [1]
 - (d) $\sqrt{81}$ [1]
 - (e) $\sqrt{400}$ [1]

- 5. Find the value of the following:
 - (a) $\sqrt[3]{8}$ [1]
 - (b) $\sqrt[3]{64}$ [1]
 - (c) $\sqrt[3]{-27}$ [1]
 - (d) $\sqrt[3]{1}$ [1]
 - (e) $\sqrt[3]{1000}$ [1]

6. Work out the value of:

(a)
$$3^2 + 2^3$$
 [2]

(b)
$$\sqrt{100} - \sqrt[3]{64}$$
 [2]

(c)
$$(-1)^3 + (-1)^2$$
 [2]

Total: [6]

7.	(a)	A square field has an area of 121 $\mbox{m}^2.$ What is the length of one side of the field? [1]
	(b)	A cube-shaped box has a volume of 216 cm ³ . What is the length of one edge of the box? [1]
	(c)	Find two consecutive square numbers that have a difference of 15. [2]
		Total: [4]
8. List the first five cube numbers. [2]		
		Total: [2]
		iotai: [2]

End of Worksheet

- **1)** a) 1, 16, 25, 64, 100
 - b) 1, 8, 27, 64

c) 1, 64

2)

Reminder: Powers of Negative Numbers

- Squaring a negative number gives a **positive** result: $(-5)^2 = (-5) \times (-5) = +25$.
- Cubing a negative number gives a **negative** result: $(-2)^3 = (-2) \times (-2) \times (-2) = -8$.

a)
$$7^2 = 7 \times 7 = 49$$

b)
$$11^2 = 11 \times 11 = 121$$

c)
$$(-5)^2 = (-5) \times (-5) = 25$$

d)
$$1^2 = 1 \times 1 = 1$$

e)
$$20^2 = 20 \times 20 = 400$$

3) a)
$$4^3 = 4 \times 4 \times 4 = 64$$

b)
$$1^3 = 1 \times 1 \times 1 = 1$$

c)
$$(-2)^3 = (-2) \times (-2) \times (-2) = -8$$

d)
$$5^3 = 5 \times 5 \times 5 = 125$$

e)
$$10^3 = 10 \times 10 \times 10 = 1000$$

4)

Reminder: Finding a Square Root

To find the square root of a number (e.g., $\sqrt{49}$), we ask the question: "What positive number, when multiplied by itself, gives 49?" Since $7 \times 7 = 49$, the answer is 7.

a)
$$\sqrt{49} = 7$$

b)
$$\sqrt{144} = 12$$

c)
$$\sqrt{1} = 1$$

d)
$$\sqrt{81} = 9$$

e)
$$\sqrt{400} = 20$$

5)

Reminder: Finding a Cube Root

To find the cube root of a number (e.g., $\sqrt[3]{8}$), we ask the question: "What number, when multiplied by itself three times, gives 8?" Since $2 \times 2 \times 2 = 8$, the answer is 2.

a)
$$\sqrt[3]{8} = 2$$

b)
$$\sqrt[3]{64} = 4$$

c)
$$\sqrt[3]{-27} = -3$$

d)
$$\sqrt[3]{1} = 1$$

e)
$$\sqrt[3]{1000} = 10$$

6) a)
$$3^2 + 2^3 = (3 \times 3) + (2 \times 2 \times 2)$$

= $9 + 8$
= 17

b)
$$\sqrt{100} - \sqrt[3]{64} = 10 - 4$$

= 6

c)
$$(-1)^3 + (-1)^2 = (-1) + (1)$$

= 0

7) a)

Method: Finding Side Length from Area of a Square

The area of a square is side². To find the side length from the area, you must calculate the square root of the area.

Side length =
$$\sqrt{121}$$

= 11 m

b)

Method: Finding Edge Length from Volume of a Cube

The volume of a cube is edge³. To find the edge length from the volume, you must calculate the cube root of the volume.

Edge length =
$$\sqrt[3]{216}$$

= $6 \, \text{cm}$

c) The two consecutive square numbers are 49 and 64, since 64 - 49 = 15.

Deeper Insight: The Algebraic Approach

We are looking for two consecutive integers, n and n+1, such that the difference between their squares is 15.

$$(n+1)^{2} - n^{2} = 15$$

$$(n^{2} + 2n + 1) - n^{2} = 15$$

$$2n + 1 = 15$$

$$2n = 14$$

$$n = 7$$

The integers are 7 and 8. Their squares are $7^2 = 49$ and $8^2 = 64$.

8) The first five cube numbers are: 1, 8, 27, 64, 125.